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Abstract— The ability of a nonlinear system to recover from a
large disturbance to a desired stable equilibrium point depends
on system parameter values, which are often uncertain and
time varying. A particular disturbance acting for a finite time
can be modeled as an implicit map that takes a parameter
value to its corresponding post-disturbance initial condition in
state space. The system recovers when the post-disturbance
initial condition lies inside the region of attraction of the stable
equilibrium point. Critical parameter values are defined to be
parameter values whose corresponding post-disturbance initial
condition lies on the boundary of the region of attraction.
Computing such values is important in numerous applications
because they represent the boundary between desirable and
undesirable system behavior. Many realistic system models
involve controller clipping limits and other forms of switching.
Furthermore, these hybrid dynamics are closely linked to
the ability of a system to recover from disturbances. The
paper develops theory which underpins a novel algorithm for
numerically computing critical parameter values for nonlinear
systems with clipping limits and switching. For an almost
generic class of vector fields with event-selected discontinuities,
it is shown that the boundary of the region of attraction is
equal to a union of the stable manifolds of the equilibria and
periodic orbits it contains, and that this decomposition persists
and the boundary varies continuously under small changes in
parameter.

I. INTRODUCTION

Engineered systems, such as power systems, are subject
to disturbances. In the power system case, for example,
a disturbance may occur due to a lightning strike on a
transmission line. Disturbances drive systems away from
their desired operating point, typically a stable equilibrium
point. Whether a system is able to recover from a particular
disturbance, back to an equilibrium point, depends upon the
parameters of the system, which are often uncertain and time
varying.

The disturbance can be thought of as providing an initial
condition to a nonlinear system, with that initial condition
being a function of parameter value. We call this the post-
disturbance initial condition (PDIC). The system recovers
precisely when the PDIC lies within the region of attraction
(RoA) of the desired stable equilibrium point, and it fails to
recover when the PDIC is outside the RoA. The boundary
case typically (as the results later show) occurs when the
PDIC is in the boundary of the RoA. Parameter values which
give rise to a PDIC that lies in the boundary of the RoA
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are therefore referred to as critical parameter values. In
practice, the implicit map from parameter value to PDIC
is typically not known explicitly. The PDIC, as well as the
ensuing system behavior, must be obtained using numerical
simulation.

Knowledge of critical parameter values is valuable for
many applications, such as power systems, because it pro-
vides a measure of the margin for safe operation. However,
numerous attempts over the past several decades to develop
algorithms for numerically computing critical parameter val-
ues have met with limited success. The key challenge is that
the boundary of the RoA is typically a high dimensional
object, not necessarily a manifold, which is very difficult to
locate, and even if it could be known exactly at one instant,
it is a function of parameter value so will vary as parameter
values change in time.

The stable manifold of a hyperbolic equilibrium point or
periodic orbit is the set of initial conditions which converge
to that equilibrium point or periodic orbit in forward time.
Older work attempted to develop a characterization of the
boundary of the RoA for nearly generic, or typical, C1 vector
fields as the union of the stable manifolds of the equilibria
and periodic orbits it contains [1], [2]. This structure was
exploited to develop Lyapunov function based algorithms
to compute critical parameter values [3], [4]. This work
met with challenges since it did not adequately consider
the dependence of the boundary of the RoA on parameter
values, and known Lyapunov functions were typically too
conservative to be of value for practical power system
models.

More recent work has shown that, for nearly generic
parametrized C1 vector fields, the boundary of the RoA
varies continuously, and the boundary decomposition dis-
cussed above persists, under small changes in parameter
values [5]. Furthermore, under these assumptions there exists
a special equilibrium point or periodic orbit on the boundary
of the RoA, hereafter referred to as the controlling critical
element, such that the time the system spends in a neighbor-
hood of it is continuous in parameter value and approaches
infinity as the parameter value approaches its critical value.
This has been used to provide theoretical justification for
algorithms which numerically compute critical parameter
values by varying a parameter so as to maximize the time
the system trajectory spends inside a neighborhood of the
controlling critical element [6], [7].

However, practical power system models involve switch-
ing events, such as clipping limits on control devices, which
lead to vector fields that are not C1. Furthermore, it has
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been observed that such switching is fundamentally coupled
with loss of system recoverability in practice [8], [9]. The
purpose of this note is to extend the more recent theoretical
work mentioned above to the setting of a large class of
vector fields, closely related to what have been called vector
fields with C1 event-selected discontinuities [10], which can
exhibit various forms of switching. In turn, this provides
justification for the extension of numerical algorithms to
systems exhibiting switching. The algorithms previously
developed can already be applied to these types of hybrid
systems in practice [5], [6]. Vector fields with event-selected
discontinuities have received attention recently due to their
applicability to many physical and engineering system mod-
els which possess a finite number of triggering hypersurfaces
where the vector field is discontinuous.

A sketch of a proof was made in [9] for a decomposition
of the boundary of the RoA for systems with clipping limits
and fixed parameter values. In that work, the vector field
was locally Lipschitz. Generalizations to systems exhibiting
switching, or any discontinuous vector fields, have not been
made even in the case of constant parameters. Therefore,
the classification of the boundary of the RoA for vector
fields with C1 event-selected discontinuities, presented here,
may be of interest for the fixed parameter case, as well as
for its behavior under small variations in parameter. The
primary application, though, is the theoretical justification
of algorithms for numerically computing critical parameter
values.

The paper is organized as follows. Section II gives a
motivating example. Section III provides some dynamical
systems background. Then Section IV discusses the main
results. Section V provides a sketch of the key proofs,
although some are nearly identical to prior work in [5] and,
therefore, omitted for brevity. Finally, Section VI offers some
concluding remarks.

II. EXAMPLE

The following example serves to illustrate a mechanism
whereby the RoA boundary can fail to vary continuously for
a parameterized vector field, and how this can lead to situa-
tions where no critical parameter value exists. Existence of
critical parameter values is important because, together with
their relevant properties, they provide theoretical justification
for the numerical algorithm described in the introduction.
Without critical parameter values, predicting the transition
from desirable to undesirable system behavior under param-
eter variation becomes much more difficult in both theory
and practice. The theory developed in subsequent sections
will prove that this example is not typical; in particular, a
large class of hybrid dynamical systems does not exhibit
the behavior depicted in this example for small changes in
parameter.

Let J = (−1, 1) and for p ∈ J define fp as a vector field
on R2 piecewise as follows. Let r := r(x, y) =

√
x2 + y2.

Let h(a,b) : R → R be a smooth bump function with
h−1(1) = [0, a] and h−1(0) = [b,∞) (see [11, Lemma
2.21] for a specific example). For |r| ≤ 1, let fp(x, y) =

(−x,−y)− ph(2.5,3)(r)

r (x, y), and for |r| > 1, let fp(x, y) =

h(1,2)(r)

2r (−x − y, x − y) − ph(2.5,3)(r)

r (x, y). This family of
vector fields are each piecewise C1 with a switching surface
on the circle |r| = 1. For p ∈ J , let sp(x, y) = (r − 1)2.
Then s−1p (0) = {(x, y) : |r(x, y)| = 1}. Thus, for each
p ∈ J , {fp, sp} defines a vector field with event-selected
C1 discontinuities, as will be defined below. Furthermore,
{fp, sp}p∈J is a strong C1 continuous family of event-
selected C1 vector fields, also defined below.

Figure 1 shows the vector field fp for p = 0.3. It has
a stable equilibrium point at the origin whose RoA is the
open ball of radius r = 3 with boundary the circle of radius
r = 3. This qualitative picture, in particular the RoA and its
boundary, remain the same for any p > 0. The red and green
curves in the figure show the images of two sets of parameter
dependent initial conditions (ICs). The ICs corresponding to
p = 0.3 are shown as red and green circles, and the ICs
move along the red and green lines as p decreases. Note that
both the red and green ICs lie inside the RoA for p = 0.3
(and any p > 0).

Figure 2 shows the vector field fp for p = 0. Note that the
RoA of its stable equilibrium point is the open ball of radius
r = 2, with boundary the circle of radius r = 2. Here the
red circle, denoting the red IC, lies inside the RoA whereas
the green circle, denoting the green IC, lies outside the RoA.

Figure 3 shows the vector field fp for p = −0.3. Note
that the RoA of its stable equilibrium point is the open ball
of radius r ≈ 1.5, with boundary the circle (now a periodic
orbit) of radius r ≈ 1.5. Here the red circle, denoting the red
IC, lies on the boundary of the RoA, and hence p = −0.3 is
a critical parameter value for the red ICs, whereas the green
circle, denoting the green IC, lies outside the RoA.

In summary, the red ICs intersect the RoA boundary at
p = −0.3, so that p = −0.3 is a critical parameter value for
them. However, the green ICs pass from inside the RoA (for
p > 0) to outside the RoA (for p ≤ 0) without ever lying on
the RoA boundary. So, there is no critical parameter value
for the green ICs. This is possible because the RoA boundary
varies discontinuously at p = 0.

The theory developed in this paper will prove that discon-
tinuous variation of the RoA boundary under small parameter
variation is not possible for a large class of practical hybrid
dynamical systems, that these systems do possess critical
parameter values for a particular disturbance, and that a
previously designed algorithm can be used to numerically
compute those critical values.

III. BACKGROUND

Characterization of the boundary of the region of attraction
in terms of stable manifolds for fixed parameter values [1],
[2] was carried out using tools that were developed for
a class of C1 vector fields known as Morse-Smale vector
fields [12]. More recently, similar techniques were used to
develop arguments for continuity of the boundary under
small changes in parameter values for C1 vector fields [5].

We will assume that all vector fields, C1 or not, are defined
on M := Rn for some n > 0. First we review some
terminology of nonlinear systems with a C1 vector field. Let
J ⊂ R be an open interval containing p0 and let {fp}p∈J
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Fig. 1. The vector field fp for p = 0.3. The red and green lines show two
sets of parameter dependent initial conditions, with the initial conditions for
p = 0.3 shown as red and green circles.

-3 -2 -1 0 1 2 3

x

-3

-2

-1

0

1

2

3

y

Fig. 2. The vector field fp for p = 0. The red and green lines show two
sets of parameter dependent initial conditions, with the initial conditions for
p = 0 shown as red and green circles.

-3 -2 -1 0 1 2 3

x

-3

-2

-1

0

1

2

3

y

Fig. 3. The vector field fp for p = −0.3. The red and green lines show
two sets of parameter dependent initial conditions, with the initial conditions
for p = −0.3 shown as red and green circles.

be a parameterized family of vector fields on M . Define f
a vector field on M × J by f(x, p) = (fp(x), 0). Let φ
denote the flow of f such that φ(x, t, p) is the flow of the
system from initial condition x under the vector field fp for
a time t. Let φ(t,p) : M → M by φ(t,p)(x) = φ(x, t, p). If
X(p) ⊂ M is an equilibrium point or periodic orbit of fp
for some p ∈ J , we call X(p) a critical element of fp.

An equilibrium point X(p) of fp is hyperbolic if
d(φ(1,p))X(p) has no imaginary eigenvalues. If X(p) is a
periodic orbit and x ∈ X(p) then there exists a hypersurface
S ⊃ {x} and a C1 map τ : S → S such that τ is the first
return (Poincare) map. The periodic orbit X(p) is hyperbolic
if dτx has no imaginary eigenvalues. For a hyperbolic critical
element, let nu(X(p0)) denote the unstable dimension of
TX(p0)M , and let ns(X(p0)) denote the stable dimension
of TX(p0)M . A hyperbolic critical element X(p) possesses
local stable and unstable manifolds, denoted W s

loc(X(p))
and Wu

loc(X(p)), respectively, such that the flow restricted
to W s

loc(X(p)) is a contraction in forwards time, and the
flow restricted to Wu

loc(X(p)) is a contraction in backwards
time. The stable and unstable manifolds, W s(X(p)) and
Wu(X(p)), respectively, are then constructed by flowing
W s

loc(X(p)) and Wu
loc(X(p)) backwards and forwards in

time, respectively. The RoA of a stable hyperbolic equilib-
rium point is its stable manifold, and the RoA boundary is
the boundary of its stable manifold.

A point x ∈ M is wandering under fp if there exists
an open neighborhood U of x in M and some T > 0
such that |t| > T implies that φ(U, t, p)

⋂
U = ∅. A point

x ∈ M is nonwandering if it is not wandering. Let Ω(fp)
denote the set of all nonwandering points of fp. These
include all critical elements of fp. A pair of C1 immersed
submanifolds X and Y are transverse if for every q ∈ X∩Y ,
TqX + TqY = TqM ∼= M . A Morse-Smale vector field g is
a C1 vector field such that Ω(g) is equal to a finite union
of hyperbolic critical elements whose stable and unstable
manifolds intersect transversely [13].

Let C1(M,N) denote C1 maps from M to N , both C1

manifolds. The strong C1 topology on C1(M,N) is defined
in [14, Chapter 2]. A parametrized family of vector fields
{fp}p∈J is strong C1 continuous if the map p → fp is
continuous as a map from J to C1(M,TM) equipped with
the strong C1 topology. In particular, if fp → g as p→ p̂ in
the strong C1 topology then there exists K ⊂ M compact
such that for any ε > 0, p sufficiently close to p̂ implies
that fp and g agree outside of K and that fp and g along
with their first derivatives are ε-close on K. A property is
generic for vector fields on M if the set of vector fields
possessing this property contains a countable intersection
of open, dense sets in C1(M,TM). A family of critical
elements {X(p)}p∈J of {fp}p∈J is C1 continuous if there
exists a C1 manifold S and a C1 function F : S × J →M
such that F |S×{p} is injective onto its image X(p) for all
p ∈ J . We say {Ap}p∈J is a Chabauty continuous family of
subsets of Rn if for every p0 ∈ J and every {pn}∞n=1 ⊂ J
such that pn → p0, for every x ∈ Ap0 there exists a sequence
{xn}∞n=1 with xn ∈ Apn and xn → x, and every sequence
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{xn}∞n=1 with xn ∈ Apn has all of its limit points contained
in Ap0 .

Next we introduce some additional notation. Let X(p) ⊂
M and Xp := X(p) × {p} ⊂ M × J . For Q ⊂ J , write
X(Q) =

⋃
p∈QX(p) ⊂M and XQ =

⋃
p∈QXp ⊂M × J .

For any set A, let ∂A denote its topological boundary, A
its topological closure, and int A its topological interior. For
any set S, let tp∈JS := S × J . If D ⊂M , let Dε := {x ∈
M : d(x,D) < ε} where d is the Euclidean distance.

In order to incorporate the effects of clipping limits and
switching, we will employ a class of hybrid dynamical
systems which we call vector fields with event-selected C1

discontinuities. Note though that the equivalent concept in
[10] is slightly more general. This class of vector fields,
which is defined below, has several desirable properties
including the existence of a global flow which is piecewise
C1.

A rough vector field is a vector field that is not assumed
to be C1 or even C0. This includes vector fields exhibiting
limits or switching behavior, but also includes C1 vector
fields. We next define event functions, whose zero level sets
represent switching surfaces and are the points of disconti-
nuity of the vector field. The definition ensures that the flow
of the vector field will cross switching surfaces transversely.
This definition rules out grazing of the switching surfaces
and Zeno type behavior.
Definition. Let f be a rough vector field on M , s ∈
C1(M,Rm), and U an open set in M . Then s is an event
function for f on U if for each component sj of s, either
sj(U) is disjoint from zero or, if not, then there exists c > 0
such that either d(sj)x(f(x)) ≥ c or d(sj)x(f(x)) ≤ −c, for
all x ∈ U . Such a U is referred to as an event neighborhood
of f .

Let Bm = {−1,+1}m be m copies of {−1,+1}, meant
to denote whether each event function is positive or negative,
and hence indicate the status of each switching event. For
each j ∈ {1, ...,m}, let Zj = s−1j (0) denote the switching
surface corresponding to sj . Let Z =

⋃m
j=1 Zj be the union

of the switching surfaces. Let σj : M → {−1,+1} that
sends x to the sign of sj(x), or to 1 if sj(x) = 0. Let σ :
M → {−1,+1}m be the product of σj for j ∈ {1, ...,m}.
Then σ(x) denotes the switching states of the system at x.

The following definition of event-selected C1 ensures
both that the flow encounters switching surfaces transversely
and that the flow through points of intersection of multiple
switching surfaces is well-defined and C1.
Definition. Let f be a rough vector field on M and s ∈
C1(Rm,R). Then f and s determine an event-selected C1

vector field if the following conditions are satisfied:
1) For every point x ∈ M , there exists an open set Ux

containing x such that s is an event function for f on
Ux.

2) For every j, j′ ∈ {1, ...,m}, Zj and Zj′ are transverse.
3) There exists a set of C1 vector fields {f b}b∈Bm on M ,

called selection functions, such that for every x ∈M ,
f(x) = fσ(x)(x).

An example of an event-selected C1 vector field was

shown in Section II with event function s1(x, y) =
(
√
x2 + y2−1)2. By [10, Corollary 1], if f and s determine

an event-selected C1 vector field over M then there exists a
piecewise C1 global flow.
Definition. A piecewise C1 immersed submanifold is a
topological manifold T ⊂ M together with a C1 immersed
submanifold, denoted T̃ , in M\Z which is an open and dense
topological submanifold of T .
Definition. Two piecewise C1 immersed submanifolds T and
T ′ are transverse if T̃ and T̃ ′ are transverse in M\Z.
Definition. Let {fp}p∈J be a family of rough vector fields
on M and let {sp}p∈J be a family of C1 functions from M
to Rm. We say that {fp, sp}p∈J is a strong C1 continuous
family of event-selected C1 vector fields on M if the
following conditions are satisfied:

1) There exists p0 ∈ J such that fp0 and sp0 determine
an event-selected discontinuous C1 vector field on M .

2) {sp}p∈J is a strong C1 continuous family of functions
in C1(M,Rm).

3) There exists a set of families of vector fields on M ,
{f bp}b∈Bm,p∈J , such that for each p ∈ J and x ∈ M ,
f(x) = f

σ(x)
p (x).

4) For each b ∈ Bm, {f bp}p∈J is a C1 continuous family
of C1 vector fields on M .

We will see in Lemma 2 that if {fp, sp}p∈J is a strong C1

continuous family of event-selected C1 vector fields on M
then for J sufficiently small, (fp, sp) determines an event-
selected C1 vector field for each p ∈ J . Define f , a rough
vector field on M×J , by f(x, p) = (fp(x), 0). Then Lemma
2 will show that for J sufficiently small, f has a piecewise
C1 flow.

For j ∈ {1, ...,m} and p ∈ J , let Zpj = (sjp)
−1(0). For

p ∈ J let Zp =
⋃m
j=1 Z

p
j , and for j ∈ {1, ...,m} let Zj =

tp∈JZpj . Let ZJ = tp∈JZp and let CJ = M × J\ZJ .

IV. RESULTS

Let J ⊂ R be an open interval and let p0 ∈ J . Let
{fp, sp}p∈J be a strong C1 continuous family of event-
selected C1 vector fields on M . Let Xs(p0) be a stable
hyperbolic equilibrium point of fp0 which lies in an open
neighborhood on which fp0 is C1. For J sufficiently small
we make the following assumptions:

1) Every equilibrium point of fp0 is disjoint from Zp0 .
2) There exists a neighborhood V of the projection

πM (∂W s(Xs
J)

⋂
Mp0) onto M such that Ω(f)

⋂
V

consists of a finite union of critical elements of fp0 ;
call them {Xi(p0)}ki=1. Shrink V if necessary so that
Xi
p0 ⊂ ∂W

s(Xs
J) for every i ∈ I := {1, ..., k}.

3) Let γ ⊂ ∂W s(Xs
J) be an orbit. Then γ converges to

Xi for some i ∈ I .
4) With respect to fp0 , every equilibrium point Xi(p0)

is hyperbolic in the sense that it is hyperbolic in its
neighborhood on which fp0 is C1. For any Xi(p0) a
periodic orbit, we will see below that it possesses a
point x ∈M\Zp0 and a C1 cross section S with a C1

first return map with x as a fixed point. Then for any
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periodic orbit Xi(p0), assume that x is a hyperbolic
fixed point of its first return map.

5) We will see below that every Xi(p0) possesses sta-
ble and unstable manifolds, call them W s(Xi(p0))
and Wu(Xi(p0)), respectively, which are piecewise
C1 immersed submanifolds. For every i, j ∈ I ,
Wu(Xi(p0)) and W s(Xj(p0)) are transversal in M .

Assumptions 2, 4, and 5 ensure that fp0 is Morse-Smale
along ∂W s(Xs

J)
⋂
M ×{p0}. Assumpton 3 ensures that no

trajectories in ∂W s(Xs
J) escape to infinity, which is required

since M is not compact, and that no new nonwandering
elements enter ∂W s(Xs

J) for p ∈ J , although we will see
that the perturbations of the critical elements {Xi(p0)}i∈I
will be contained in the boundary. Assumptions 1, 4, and 5
are generic. For the components on which fp0 is C1, it is
generically true that Ω(fp0) is equal to the closure of the
union of critical elements of fp0 . However, it is not generic
that there exists a neighborhood V containing a finite number
of critical elements, so Assumption 2 is not generic.

Theorem 1 shows that the boundary of the RoA is equal
to the union over p ∈ J of the family of boundaries of the
RoAs, and that the decomposition of the boundary of the
RoA into a union of stable manifolds persists for p ∈ J .
Corollary 1 then states that the family of boundaries varies
continuously with p ∈ J .
Theorem 1. For J sufficiently small, ∂W s(Xs

J) =
tp∈J∂W s(Xs(p)) =

⋃
i∈IW

s(Xi
J).

Corollary 1. {∂W s(Xs(p))}p∈J is a Chabauty continuous
family of subsets of M .

Let y : J → M denote a set of post-disturbance initial
conditions with yp = (y(p), p) ⊂ M × J , and let y be C1.
Lemma 1 states that if yJ intersects both the RoA and its
complement, then yJ intersects the boundary of the RoA.
Lemma 1. Suppose Assumptions 1–5 hold and there exist
p0, p1 ∈ J with yp0 ∈W s(Xs

J) and yp1 6∈W s(Xs
J). Without

loss of generality suppose p0 < p1. Then there exists a
unique minimum parameter value p∗ ∈ J and i ∈ I such
that yp∗ ∈ ∂W s(Xs

J) and y(p∗) ∈W s(Xi(p∗)).
Let X∗ = Xi where i is chosen as in Lemma 1. Then

X∗ is called the controlling critical element. If N ⊂ M is
any set, let SpN be the set in [0,∞) of times that the flow
starting from y(p) is contained in N . Let τN : J → R send
p to λ(SpN ) where λ is Lebesgue measure. Note that τN
is not always well-defined since SpN may not be Lebesgue
measurable.

If X∗ is an equilibrium point, let N be a compact,
connected, codimension zero C1 manifold with boundary
such that X∗(J) ⊂ N ⊂ M × J\ZJ . If X∗ is a periodic
orbit, let x(p0) ∈ X∗

⋂
M\Zp0 be a point which permits a

C1 section S and a C1 first return map. Shrink S so that
it is contained in M\Zp0 . We will see below that for J
and S sufficiently small, there is a C1 first return map for S
corresponding to fp for p ∈ J with a unique hyperbolic fixed
point x(p) such that {x(p)}p∈J is C1 continuous. Let N be a
flow out of a neighborhood of xJ in SJ with respect to f , and
choose N such that it is compact and N ⊂M×J\ZJ . Note
that N is a codimension zero C1 manifold with boundary.

Theorem 2 states that τN is well-defined and continuous over
[p0, p

∗] with τN diverging to infinity as p approaches p∗ from
below.
Theorem 2. Assume the conditions of Lemma 1 hold and
that N is constructed as above with Xs

J

⋂
N = ∅ and

such that the orbit with initial condition yp has nonempty,
transversal intersection with N for p ∈ [p0, p

∗]. Then
τN : [p0, p

∗] → [0,∞] is well-defined and continuous. In
particular, limp0↗p∗ τN (p) =∞.

Theorem 2 provides a theoretical justification for nu-
merical algorithms which compute critical parameter values
by varying a parameter so as to maximize the time the
trajectory spends inside a neighborhood of the controlling
critical element. This algorithm is described in detail in [6],
[7].

The proofs of these results rely on a large number of
technical lemmas. Many proofs have been omitted because
they are nearly identical to prior proofs in [5]. Otherwise,
sketches of the proofs are provided, but complete proofs are
omitted for brevity.

V. PROOFS

Lemma 2. If {fp, sp}p∈J is a strong C1 continuous family
of event-selected vector fields on M , then for J sufficiently
small, p ∈ J implies that fp and sp determine an event-
selected C1 vector field over M .

Proof Sketch of Lemma 2. Since {fp, sp}p∈J is a strong
C1 continuous family of event-selected vector fields on M ,
by definition there exists a set of families of vector fields
{f bp}b∈Bm,p∈J such that for each p ∈ J and x ∈M , f(x) =

f
σ(x)
p (x). Furthermore, as {f bp}p∈J is strong C1 continuous

for each b ∈ Bm, Bm is finite, and {sp}p∈J is strong C1

continuous, shrinking J if necessary implies that there exists
a compact set S ⊂ M such that for p ∈ J , fp|M\S =
fp0 |M\S . Hence, as fp0 and sp0 determine an event-selected
C1 vector field, to show that fp and sp determine an event-
selected C1 vector field for each p ∈ J it suffices to show
that their restriction to S is event-selected C1.

To do so, first it must be shown that the switching
surfaces Zpj for j ∈ {1, ...,m} are transverse over S. But,
since the switching surfaces intersected with S are compact
submanifolds, strong C1 perturbations to sp0 (such as sp for
p ∈ J) result in C1 perturbations to the switching surfaces,
and since transversal intersections of compact submanifolds
(possibly with boundary) is preserved under C1 perturbations
to the submanifolds, it can be shown that for J sufficiently
small, transverse intersections of the switching surfaces on
S can be preserved.

Finally, it must be shown that for every p ∈ J and x ∈ S,
there exists an open set U(x,p) containing x in M such that
U(x,p) is an event neighborhood for fp. To do so, first fix
x ∈ S and let K ⊂ {1, ...,m} denote the switching surfaces
of Zp0 which x is contained in. Then the distance of x from
every switching surface which x is not contained in must be
positive and, choosing Jx ⊂ J sufficiently small, will remain
positive. Therefore, there exists Ux an open neighborhood in
M containing x such that for p ∈ Jx the intersection of
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Ux with the switching surfaces consists at most of subsets
of switching surfaces which contained x for p0. As the
switching surfaces in K meet transversely at x for p0, it
can be shown that for Jx sufficiently small, the switching
surfaces in K still have nonempty, transversal intersection
in Ux.

Further argument involving continuity of the derivatives of
s and the derivatives of the selection functions shows that the
bounds on d(spj )x(f(x)) for x ∈ Ux, which hold for p = p0
since fp0 and sp0 determine an event-selected vector field,
will also hold for p ∈ Jx after shrinking Jx if necessary
(and after small changes to the constant c in the definition).
Then Ux is an event neighborhood for fp for any p ∈ Jx.
As {Ux}x∈S is an open cover of S compact, there exists a
finite subcover {Uxi

}li=1. Then let J =
⋂l
i=1 Jxi

. For every
y ∈ S and p ∈ J , y ∈ Uxi for some i, and Uxi is an event
neighborhood for fp by the construction above. �

Let f be the rough vector field on M × J defined by
f(x, p) = (fp(x), 0).
Lemma 3. For J sufficiently small, f possesses a piecewise
C1 flow φ : M × R× J →M .

Proof Sketch of Lemma 3. The main idea of the proof
is to modify the proof of existence of a flow for a fixed
parameter event-selected C1 vector field in [10, Section 3]
to incorporate parameter variation over p ∈ J . The key
challenge is to construct a local flow for f . Once this is
accomplished, the local flows can be combined into a global
flow in a manner entirely analogous to the fixed parameter
case [10, Corollary 1], which itself is analogous to the case
of smooth vector fields [11, Theorem 9.12].

By Lemma 2, fp and sp determine an event-selected
C1 vector field for every p ∈ J . The event-selected
neighborhood condition in the definition of event-selected
discontinuous ensures that for each j ∈ {1, ...,m} and for
each p ∈ J , if x(t) is an integral curve of fp then σj(x(t))
can only transition in one direction as time passes forwards
- either from +1 to −1 or from −1 to +1 (depending on
whether the bound in the definition is for +c or −c). This
ensures that switching surfaces are crossed monotonically
with respect to time, ie. they can only be crossed in one
direction. Using this fact, the local flow is constructed near
a point (x, p) ∈M × J as follows.

The monotonicity discussed above makes it possible to
identify a unique selection function f bp whose flow will
dictate the flow of f starting at (x, p) for a small interval
in forwards time (similarly in backwards time). The first
intersection time of (x, p) under the flow of f bp with each
switching surface is then found (if it exists). The switch-
ing surface with the earliest such intersection time is then
identified, say Zpj . Then the flow of f bp is used to flow
(x, p) forwards in time until it intersects Zpj . Afterwards,
the above process is repeated. It cannot persist forever,
even for large flow times, because there are only a finite
number of sign transitions permitted. In [10, Section 3],
this flow is shown to be piecewise C1 by showing that the
the intersection times of the flow of each selection function
with each switching surface are each C1 functions of initial

condition. This follows by the implicit function theorem and
since the selection functions have flows which are C1 with
respect to time and initial condition.

The key change required here is to note that the selection
functions considered here have flows that are C1 with respect
to time, initial condition, and to parameter. Therefore, the
implicit function theorem shows that the intersection times
of the flow of each selection function with each switching
surface are each C1 functions of both initial condition and
parameter. Ultimately, this is then used to show that the local
flow which results from the above construction is piecewise
C1 with respect to initial condition, time, and parameter.
These local flows are then combined into a global flow as
discussed above. �
Lemma 4. ZJ is closed and CJ is open in M × J .

Proof of Lemma 4. Since {sp}p∈J is C1 continuous, there
exists s : M×J → Rm such that s is C1. Then ZJ = s−1(0)
is closed in M × J because s is continuous. Hence, CJ =
M × J\ZJ is open in M × J . �
Lemma 5. For any (x, t, p) ∈ M × R × J such that
x, φ(x, t, p) ∈ CJ , there exist open neighborhoods Ux, T x,
and Jx of x, t, and p, respectively, such that φ|Ux×Tx×Jx

is C1.
Proof Sketch of Lemma 5. By Lemma 4, CJ is open in

M × J . By Lemma 3, there exists a piecewise C1 flow φ
for f which has discontinuous derivative only on ZJ . As
x, φ(x, t, p) ∈ CJ open and φ is continuous, it can be shown
that there exist open neighborhoods Ux, T x, and Jx of x, t,
and p such that Ux × T x × Jx and φ(Ux × T x × Jx) are
contained in CJ . The above implies that φ|Ux×Tx×Jx is C1.

�
Lemma 6. For any p ∈ J , x ∈ M , and T > 0 finite,
φ(x, [0, T ], p) intersects Zp in only finitely many isolated
points.

Proof Sketch of Lemma 6. For any t ∈ [0, T ], φ(x, t, p) is
contained in an event neighborhood, so the time derivative of
sjp ◦φ(x, t, p) is bounded away from zero almost everywhere
for every j ∈ {1, ...,m}. This can then be used to show
that intersection points of φ(x, [0, T ], p) with Zp, which are
points where sjp ◦φ(x, t, p) = 0 for some j, must be isolated.
As φ(x, [0, T ], p) is compact, this implies that it can only
have finitely many. �
Lemma 7. Let Xi(p0) be a periodic orbit for fp0 . Then there
exists x ∈ Xi(p0)

⋂
CJ and a C1 cross section S containing

x in M such that the first return map is well-defined and C1

on S. Furthermore, for J and S sufficiently small, p ∈ J
implies that the first return map is well-defined and C1 on
S, that it varies C1 with p, and that fp is transverse to S.

Proof Sketch of Lemma 7. By Lemma 6, since Xi(p0) is
the image of the flow over a finite length of time, its inter-
section with Zp0 is finite. So, there exists x ∈ Xi(p0)\Zp0 .
Let S be a cross section containing x, transverse to fp0 , and
contained in the connected component of M\Zp0 which con-
tains x. By continuity of the flow, shrinking S if necessary
the first return map is well-defined on S. Let τ be the period
of Xi(p0). By Lemma 5, for J sufficiently small there exists
a neighborhood U of x such that φ(·, τ, ·) is C1 over U ×J .
Shrinking S such that S ⊂ U then implies that the first return
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map restricted to S is C1 for any p ∈ J and that it varies
C1 with p. Transversality of fp for p ∈ J follows since fp0
is transverse to S and since fp is C1 close to fp0 for p ∈ J .

�
Corollary 2. For J sufficiently small and for any i ∈ I
and p ∈ J , there exists a unique critical element Xi(p) C0-
close to Xi(p0) such that Xi(p) is hyperbolic in the sense
described in Assumption 4.

Proof Sketch of Corollary 2. If Xi(p0) is an equilibrium
point then it lies in CJ open. Since f is C1 over CJ and
Xi(p0) is hyperbolic with respect to fp0 , this implies that
for J sufficiently small, p ∈ J implies Xi(p) is a hyperbolic
equilibrium point C1 close to Xi(p0). If Xi(p0) is a peri-
odic orbit then there exists a point x ∈ Xi(p0)

⋂
M\Zp0

such that there exists a cross section S containing x as a
hyperbolic fixed point. By Lemma 7 above, the first return
map is C1 for any p ∈ J . Hence, for J sufficiently small S
possesses a unique hyperbolic fixed point of the first return
map for fp for any p ∈ J . Under the flow of fp this gives
rise to a unique periodic orbit Xi(p) which is C0 close to
Xi(p0). �
Lemma 8. For every i ∈ I and p ∈ J , W s(Xi(p))
and Wu(Xi(p)) are invariant, piecewise C1 immersed
submanifolds with W̃ s(Xi(p)) = W s(Xi(p))

⋂
CJ and

W̃u(Xi(p)) = Wu(Xi(p))
⋂
CJ .

Proof Sketch of Lemma 8. Fix i ∈ I and p ∈ J . By
Lemma 2, the flow of fp is piecewise C1, hence continuous.
For any x ∈ W s(Xi(p)), it can be shown that the flow
yields a C0 homeomorphism between an open subset of
W s

loc(X
i(p)) and a neighborhood of x in W s(Xi(p)), show-

ing that W s(Xi(p)) is a topological submanifold. By Lemma
5, for any x ∈ W s(Xi(p))

⋂
CJ , it can be shown that the

flow yields a C1 homeomorphism between an open subset
of W s

loc(X
i(p)) and a neighborhood of x in W s(Xi(p)),

showing that W̃ s(Xi(p)) is a C1 immersed submanifold.
Density of W̃ s(Xi(p)) in W s(Xi(p)) follows from density
of CJ in M . An analogous argument works for Wu(Xi(p)).

�
Lemma 9. W s(Xs

J) is open and invariant in M × J .
Proof Sketch of Lemma 9. Invariance follows trivially.

Note that Xs
J ⊂ CJ , which is open by Lemma 4. By Lemma

2, the flow of f is C1 in a neighborhood of Xs
J ⊂ CJ and

continuous everywhere, so the proof of [5, Lemma 2] works
to show that W s(Xs

J) is open in M × J . �
Lemma 10. For any i ∈ I such that Xi(p0) is an equilibrium
point (periodic orbit with x ∈ Xi(p0) possessing a cross
section S with a C1 first return map by Lemma 7) and
for ε > 0 sufficiently small, there exists a compact set
D ⊂ Wu

loc(X
i
J′)\Xi

J′ (D ⊂ Wu
loc(X

i
J′)

⋂
S\Xi

J′ ) and an
open neighborhood N of D in M × J such that N ⊂ Dε,
Dε

⋂
Xi
J = ∅, and

⋃
t≤0 φt(N)

⋃
W s(Xi

J) contains an open
neighborhood of Xi

p0 (x) in M × J .
Proof Sketch of Lemma 10. Fix i ∈ I . Shrinking J if

necessary, if Xi(p0) is an equilibrium point (periodic orbit)
then we may assume Xi

J ⊂ CJ (S×J ⊂ CJ by Lemma 4).
The subsequent proof is nearly identical to the proof of [5,
Lemma 4] since the flow of f |CJ is C1, except if Xi(p0) is a
periodic orbit then the first return map should be substituted

for the time-one flow φ(·, 1, p) in that proof, and the resulting
neighborhood N ⊂ S × J should be flowed out from S to
get an open neighborhood in M × J . �
Lemma 11. For any i ∈ I , (Wu(Xi

p0)−Xi
p0)

⋂
W

s
(Xs

J) 6=
∅.

Proof Sketch of Lemma 11. The proof is identical to the
proof of [5, Lemma 5] except if Xi

p0 is a periodic orbit
then

⋃
t≤0 φt(N)

⋃
W s(Xi

J) contains a neighborhood of x
in M × J , where x ∈ Xi

p0 possesses a cross section S with
a C1 first return map as in Lemma 7. �
Lemma 12. If W s(Xi(p0))

⋂
Wu(Xj(p0)) 6= ∅ then

nu(Xj(p0)) ≥ nu(Xi(p0)) for any i, j ∈ I . If Xj(p0) is
an equilibrium point, nu(Xj(p0)) > nu(Xi(p0)).

Proof Sketch of Lemma 12. By Lemma 6, intersections
of an orbit with ZJ are isolated. Hence, by invariance,
intersection of W s(Xi(p0)) with Wu(Xj(p0)) implies inter-
section of W̃ s(Xi(p0)) with W̃u(Xj(p0)). As the latter are
transverse C1 immersed submanifolds, the proof proceeds as
in [5, Lemma 6]. �
Lemma 13.
If (W s(Xi(p0))\Xi(p0))

⋂
(Wu(Xj(p0))\Xj(p0)) 6= ∅

and (W s(Xj(p0))\Xj(p0))
⋂

(Wu(Xk(p0))\Xk(p0)) 6= ∅
then (W̃ s(Xi(p0))\Xi(p0))

⋂
(W̃u(Xk(p0))\Xk(p0)) 6= ∅.

Proof Sketch of Lemma 13. By invariance,
there exist y ∈ W s(Xi(p0))

⋂
Wu

loc(X
j(p0))

and z ∈ Wu(Xk(p0))
⋂
W s

loc(X
j(p0)). These

can be chosen so that y, z ∈ CJ . Hence, by
Lemma 8, y ∈ W̃ s(Xi(p0))

⋂
W̃u

loc(X
j(p0)) and

z ∈ W̃u(Xk(p0))
⋂
W̃ s

loc(X
j(p0)). As these are transverse

C1 immersed submanifolds, and since CJ is open by
Lemma 4, working locally near Xj(p0) (or a point on its
orbit), the proof proceeds identically to the proof of [5,
Lemma 8]. �
Corollary 3. Suppose that Wu(Xi(p0))

⋂
W s(Xs(p0)) 6= ∅

and W s(Xi(p0))
⋂
Wu(Xj(p0)) 6= ∅. Then

W̃u(Xj(p0))
⋂
W̃ s(Xs(p0)) 6= ∅.

Proof Sketch of Corollary 3. Follows immediately from
Lemma 13. �
Lemma 14. For any Xi(p0), W s(Xi(p0))

⋂
Wu(Xi(p0)) =

Xi(p0).
Proof Sketch of Lemma 14. The proof is identical to the

proof of [5, Lemma 7]. �
Lemma 15. There do not exist any transverse heteroclinic
cycles of critical elements contained in ∂W s(Xs). Hence,
every heteroclinic sequence of critical elements contained in
∂W s(Xs) has finite length.

Proof Sketch of Lemma 15. The proof is identical to the
proof of [5, Lemma 9]. �
Lemma 16. For any i ∈ I , Wu(Xi(p0))

⋂
W s(Xs(p0)) 6=

∅.
Proof Sketch of Lemma 16. The proof is identical to the

proof of [5, Lemma 10]. �
Lemma 17. If Wu(Xi(p))

⋂
W s(Xs(p)) 6= ∅ for any p ∈ J

then W s(Xi(p)) ⊂ ∂W s(Xs(p)).
Proof Sketch of Lemma 17. By invariance, if Xi(p)

is an equilibrium point (periodic orbit) it suffices to
show that W s

loc(X
i(p)) (W s

loc(X
i(p))

⋂
S) is contained

in ∂W s(Xs(p)). So, let y ∈ W s
loc(X

i(p)) (y ∈
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W s
loc(X

i(p))
⋂
S), let ε > 0, and let D be a closed C1 disk

containing y such that D is contained in the ε ball centered
at y and is transverse to W s

loc(X
i(p)) (W s

loc(X
i(p))

⋂
S).

By the Inclination Lemma, a C1 embedded submanifold
of D converges C1 to Wu

loc(X
i(p)) (Wu

loc(X
i(p))

⋂
S).

By invariance, Wu
loc(X

i(p)) (Wu
loc(X

i(p))
⋂
S) intersects

W s(Xs(p)). Since W s(Xs(p)) is open, D∩W s(Xs(p)) 6= ∅
so the distance d(y,W

s
(Xs(p)) ≤ ε. As this holds for

all ε > 0, the distance must equal zero, which implies
y ∈ ∂W s(Xs(p)). �

Proof Sketch of Theorem 1. That ∂W s(Xs
J) ⊃

tp∈J∂W s(Xs(p)) follows trivially. By Assumption 3,
∂W s(Xs

J) ⊂
⋃
i∈IW

s(Xi
J). Fix i ∈ I . By Lemma 16,

Wu(Xi(p0))
⋂
W s(Xs(p0)) 6= ∅. If Xi(p0) is an equi-

librium point let B(p) = W s
loc(X

i(p)). If Xi(p0) is a
periodic orbit let B(p) = W s

loc(x(p)) where x(p) is the
fixed point of the first return map for fp as in Lemma 7.
By invariance, B(p0)

⋂
W s(Xs(p0)) 6= ∅. As B(p) is C1

continuous and W s(Xs
J) is open, J sufficiently small implies

that B(p)
⋂
W s(Xs(p)) 6= ∅. By Lemma 17, this implies

that W s(Xi(p)) ⊂ ∂W s(Xs(p)). Hence,
⋃
i∈IW

s(Xi
J) ⊂

tp∈J∂W s(Xs(p)). Combining the inclusions above yields
the result. �

Proof Sketch of Corollary 1. The proof is identical to the
proof of [5, Corollary 1] except for Xi(p0) a periodic orbit,
W s

loc(X
i(p0))

⋂
S is substituted for W s

loc(X
i(p0)) and the

first return map is used in place of the flow. �
Proof Sketch of Lemma 1. The proof is identical to the

proof of [5, Lemma 1] since it only requires continuity of
the flow. �
Lemma 18. Let q ∈ [p0, p

∗). Let T ⊂ [0,∞) be com-
pact with φ(y(q), T, q)

⋂
∂N = ∅ where N is as in the

statement of Theorem 2. Then there exists an open interval
P ⊂ [p0, p

∗) containing q such that p ∈ P implies
φ(y(p), T, p)

⋂
∂N = ∅.

Proof Sketch of Lemma 18. The proof is identical to the
proof of [5, Lemma 11] since it only requires continuity of
the flow, which follows from Lemma 2. �
Lemma 19. For p ∈ [p0, p

∗), the number of intersections
of the orbit with initial condition y(p) with ∂N is finite,
even, and constant. Furthermore, there exist C1 functions
{kl}Ll=1 such that kl : [p0, p

∗) → [0,∞) and kl(p) is the
time corresponding to the lth intersection of the orbit with
initial condition y(p) with ∂N .

Proof Sketch of Lemma 19. Since N ⊂ CJ , CJ is open
by Lemma 4, and the flow of f restricted to CJ is C1 by
Lemma 2, the flow of f is C1 over a neighborhood of N
and C0 elsewhere. Then the proof is identical to the proof
of [5, Lemma 12] since this requires only that the flow is
C1 over a neighborhood of N and C0 elsewhere. �

Proof Sketch of Theorem 2. By the proof of Lemma
19, the flow of f is C1 on a neighborhood of N and C0

elsewhere, so the proof of the Theorem is identical to the
proof of [5, Theorem 2]. �

VI. CONCLUSION

The paper establishes that for almost generic vector fields
with C1 event-selected discontinuities, the boundary of the

region of attraction (RoA) of a hyperbolic stable equilibrium
point is equal to the union of the stable manifolds of the
equilibria and periodic orbits contained in the boundary.
Furthermore, this decomposition persists, and the boundary
varies Chabauty continuously, under small changes in pa-
rameter.

This theory underpins novel algorithms for numerically
computing critical parameter values in nonlinear systems
with clipping limits and switching, such as power systems.
It establishes the existence of a controlling critical element
in the boundary of the RoA. A critical parameter value can
be found such that the corresponding trajectory lies in the
stable manifold of this critical element. For a neighborhood
of this critical element, the amount of time the trajectory
spends inside this neighborhood is a continuous function of
parameter value and diverges to infinity as the parameter
value approaches its critical value. This result forms the
basis for an algorithm which numerically computes critical
parameter values by varying parameters to maximize the time
the trajectory spends inside a neighborhood of the critical
element.
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